Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 2
Atmos. Meas. Tech., 9, 741–751, 2016
https://doi.org/10.5194/amt-9-741-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 741–751, 2016
https://doi.org/10.5194/amt-9-741-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Feb 2016

Research article | 29 Feb 2016

Notably improved inversion of differential mobility particle sizer data obtained under conditions of fluctuating particle number concentrations

Bjarke Mølgaard1, Jarno Vanhatalo2, Pasi P. Aalto1, Nønne L. Prisle1, and Kaarle Hämeri1 Bjarke Mølgaard et al.
  • 1Department of Physics, University of Helsinki, Helsinki, Finland
  • 2Department of Environmental Sciences, University of Helsinki, Helsinki, Finland

Abstract. The differential mobility particle sizer (DMPS) is designed for measurements of particle number size distributions. It performs a number of measurements while scanning over different particle sizes. A standard assumption in the data-processing (inversion) algorithm is that the size distribution remains the same throughout each scan. For a DMPS deployed in an urban area this assumption is likely to be violated most of the time, and the resulting size distribution data are unreliable. To improve the reliability, we developed a new algorithm using a statistical model in which the problematic assumption was replaced with more realistic smoothness assumptions, which were expressed through Gaussian process prior probabilities. We tested the model with data from a twin DMPS located at an urban background site in Helsinki and found that it provides size distribution data which are much more realistic. Furthermore, particle number concentrations extracted from the DMPS data were compared with data from a condensation particle counter. At 10 min resolution, the correlation for a period of 10 days was 0.984 with the new algorithm and 0.967 with the old one. Moreover, the time resolution was improved, and at 30 s resolution we obtained positive correlations for 89 % of the scans. Thus, the quality of the inverted data was clearly improved.

Publications Copernicus
Download
Short summary
We have improved the reliability of submicron aerosol particle size distributions measured in urban locations. This improvement was obtained by processing the data in a new way and avoiding a problematic assumption of a stationary aerosol during each size distribution measurement.
We have improved the reliability of submicron aerosol particle size distributions measured in...
Citation