Articles | Volume 9, issue 2
https://doi.org/10.5194/amt-9-753-2016
https://doi.org/10.5194/amt-9-753-2016
Research article
 | 
01 Mar 2016
Research article |  | 01 Mar 2016

From pixels to patches: a cloud classification method based on a bag of micro-structures

Qingyong Li, Zhen Zhang, Weitao Lu, Jun Yang, Ying Ma, and Wen Yao

Related authors

A total sky cloud detection method using real clear sky background
Jun Yang, Qilong Min, Weitao Lu, Ying Ma, Wen Yao, Tianshu Lu, Juan Du, and Guangyi Liu
Atmos. Meas. Tech., 9, 587–597, https://doi.org/10.5194/amt-9-587-2016,https://doi.org/10.5194/amt-9-587-2016, 2016
An automated cloud detection method based on the green channel of total-sky visible images
J. Yang, Q. Min, W. Lu, W. Yao, Y. Ma, J. Du, T. Lu, and G. Liu
Atmos. Meas. Tech., 8, 4671–4679, https://doi.org/10.5194/amt-8-4671-2015,https://doi.org/10.5194/amt-8-4671-2015, 2015

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Neural network processing of holographic images
John S. Schreck, Gabrielle Gantos, Matthew Hayman, Aaron Bansemer, and David John Gagne
Atmos. Meas. Tech., 15, 5793–5819, https://doi.org/10.5194/amt-15-5793-2022,https://doi.org/10.5194/amt-15-5793-2022, 2022
Short summary
Ice crystal images from optical array probes: classification with convolutional neural networks
Louis Jaffeux, Alfons Schwarzenböck, Pierre Coutris, and Christophe Duroure
Atmos. Meas. Tech., 15, 5141–5157, https://doi.org/10.5194/amt-15-5141-2022,https://doi.org/10.5194/amt-15-5141-2022, 2022
Short summary
Detection and analysis of cloud boundary in Xi'an, China, employing 35 GHz cloud radar aided by 1064 nm lidar
Yun Yuan, Huige Di, Yuanyuan Liu, Tao Yang, Qimeng Li, Qing Yan, Wenhui Xin, Shichun Li, and Dengxin Hua
Atmos. Meas. Tech., 15, 4989–5006, https://doi.org/10.5194/amt-15-4989-2022,https://doi.org/10.5194/amt-15-4989-2022, 2022
Short summary
The University of Washington Ice–Liquid Discriminator (UWILD) improves single-particle phase classifications of hydrometeors within Southern Ocean clouds using machine learning
Rachel Atlas, Johannes Mohrmann, Joseph Finlon, Jeremy Lu, Ian Hsiao, Robert Wood, and Minghui Diao
Atmos. Meas. Tech., 14, 7079–7101, https://doi.org/10.5194/amt-14-7079-2021,https://doi.org/10.5194/amt-14-7079-2021, 2021
Short summary
Twenty-four-hour cloud cover calculation using a ground-based imager with machine learning
Bu-Yo Kim, Joo Wan Cha, and Ki-Ho Chang
Atmos. Meas. Tech., 14, 6695–6710, https://doi.org/10.5194/amt-14-6695-2021,https://doi.org/10.5194/amt-14-6695-2021, 2021
Short summary

Cited articles

Ameur, Z., Ameur, S., Adane, A., Sauvageot, H., and Bara, K.: Cloud classification using the textural features of Meteosat images, Int. J. Remote Sens., 25, 4491–4503, 2004.
Baeza-Yates,R. and Ribeiro-Neto, B.: Modern Information Retrieval, ACM Press, Addison Wesley, USA, 82 pp., 1999.
Calbo, J. and Sabburg, J.: Feature extraction from whole-sky ground-based images for cloud-type recognition, J. Atmos. Ocean. Techn., 25, 3–14, 2008.
Cheng, H.-Y. and Yu, C.-C.: Block-based cloud classification with statistical features and distribution of local texture features, Atmos. Meas. Tech., 8, 1173–1182, https://doi.org/10.5194/amt-8-1173-2015, 2015.
Han, J., Kamber, M., and Pei, J.: Data Mining: Concepts and Techniques, Morgan Kaufmann, San Francisco, CA, USA, 401 pp., 2006.
Download
Short summary
This paper proposes a new cloud classification method, named bag of micro-structures (BoMS), for whole-sky imagers. BoMS treats an all-sky image as a collection of micro-structures mapped from image patches, rather than a collection of pixels. BoMS identifies five different sky conditions: cirriform, cumuliform, stratiform, clear sky, and mixed cloudiness (often appearing in all-sky images but seldom addressed in the literature). The performance of BoMS overperforms those of traditional methods.