Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 2
Atmos. Meas. Tech., 9, 817-827, 2016
https://doi.org/10.5194/amt-9-817-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 817-827, 2016
https://doi.org/10.5194/amt-9-817-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Mar 2016

Research article | 03 Mar 2016

A generalised background correction algorithm for a Halo Doppler lidar and its application to data from Finland

Antti J. Manninen1, Ewan J. O'Connor2,3, Ville Vakkari2, and Tuukka Petäjä1 Antti J. Manninen et al.
  • 1Department of Physics, University of Helsinki, Helsinki, Finland
  • 2Finnish Meteorological Institute, Helsinki, Finland
  • 3Department of Meteorology, University of Reading, Reading, UK

Abstract. Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Any bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. The reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.

Publications Copernicus
Download
Short summary
Current commercially available Doppler lidars provide a cost-effective solution for measuring vertical and horizontal wind velocities, and the co- and cross-polarised backscatter profiles. However, the background noise behaviour becomes a limiting factor for the instrument sensitivity in low aerosol load regions. In this paper we present a correction method which can improve the data availability up to 50 % and greatly improves the calculation of turbulent properties in weak signal regimes.
Current commercially available Doppler lidars provide a cost-effective solution for measuring...
Citation
Share