Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
Volume 9, issue 2
Atmos. Meas. Tech., 9, 841–857, 2016
https://doi.org/10.5194/amt-9-841-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 841–857, 2016
https://doi.org/10.5194/amt-9-841-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Mar 2016

Research article | 03 Mar 2016

Modeling the Zeeman effect in high-altitude SSMIS channels for numerical weather prediction profiles: comparing a fast model and a line-by-line model

Richard Larsson et al.

Related authors

Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2)
Philippe Baron, Satoshi Ochiai, Eric Dupuy, Richard Larsson, Huixin Liu, Naohiro Manago, Donal Murtagh, Shin-ichiro Oyama, Hideo Sagawa, Akinori Saito, Takatoshi Sakazaki, Masato Shiotani, and Makoto Suzuki
Atmos. Meas. Tech., 13, 219–237, https://doi.org/10.5194/amt-13-219-2020,https://doi.org/10.5194/amt-13-219-2020, 2020
Short summary
Synergistic radar and radiometer retrievals of ice hydrometeors
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-369,https://doi.org/10.5194/amt-2019-369, 2019
Revised manuscript accepted for AMT
Short summary
Mars submillimeter sensor on microsatellite: sensor feasibility study
Richard Larsson, Yasuko Kasai, Takeshi Kuroda, Shigeru Sato, Takayoshi Yamada, Hiroyuki Maezawa, Yutaka Hasegawa, Toshiyuki Nishibori, Shinichi Nakasuka, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 7, 331–341, https://doi.org/10.5194/gi-7-331-2018,https://doi.org/10.5194/gi-7-331-2018, 2018
Short summary
ARTS, the Atmospheric Radiative Transfer Simulator – version 2.2, the planetary toolbox edition
Stefan A. Buehler, Jana Mendrok, Patrick Eriksson, Agnès Perrin, Richard Larsson, and Oliver Lemke
Geosci. Model Dev., 11, 1537–1556, https://doi.org/10.5194/gmd-11-1537-2018,https://doi.org/10.5194/gmd-11-1537-2018, 2018
Short summary
Strato-mesospheric carbon monoxide profiles above Kiruna, Sweden (67.8 ° N, 20.4 ° E), since 2008
Niall J. Ryan, Mathias Palm, Uwe Raffalski, Richard Larsson, Gloria Manney, Luis Millán, and Justus Notholt
Earth Syst. Sci. Data, 9, 77–89, https://doi.org/10.5194/essd-9-77-2017,https://doi.org/10.5194/essd-9-77-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Evaluation of the 15-year ROM SAF monthly mean GPS radio occultation climate data record
Hans Gleisner, Kent B. Lauritsen, Johannes K. Nielsen, and Stig Syndergaard
Atmos. Meas. Tech., 13, 3081–3098, https://doi.org/10.5194/amt-13-3081-2020,https://doi.org/10.5194/amt-13-3081-2020, 2020
Short summary
Consistency and structural uncertainty of multi-mission GPS radio occultation records
Andrea K. Steiner, Florian Ladstädter, Chi O. Ao, Hans Gleisner, Shu-Peng Ho, Doug Hunt, Torsten Schmidt, Ulrich Foelsche, Gottfried Kirchengast, Ying-Hwa Kuo, Kent B. Lauritsen, Anthony J. Mannucci, Johannes K. Nielsen, William Schreiner, Marc Schwärz, Sergey Sokolovskiy, Stig Syndergaard, and Jens Wickert
Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020,https://doi.org/10.5194/amt-13-2547-2020, 2020
Short summary
First validation of Aeolus wind observations by airborne Doppler wind lidar measurements
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, and Fabian Weiler
Atmos. Meas. Tech., 13, 2381–2396, https://doi.org/10.5194/amt-13-2381-2020,https://doi.org/10.5194/amt-13-2381-2020, 2020
Short summary
Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, and Oliver Reitebuch
Atmos. Meas. Tech., 13, 2075–2097, https://doi.org/10.5194/amt-13-2075-2020,https://doi.org/10.5194/amt-13-2075-2020, 2020
Short summary
Calibration and validation of the Polarimetric Radio Occultation and Heavy Precipitation experiment aboard the PAZ satellite
Ramon Padullés, Chi O. Ao, F. Joseph Turk, Manuel de la Torre Juárez, Byron Iijima, Kuo Nung Wang, and Estel Cardellach
Atmos. Meas. Tech., 13, 1299–1313, https://doi.org/10.5194/amt-13-1299-2020,https://doi.org/10.5194/amt-13-1299-2020, 2020
Short summary

Cited articles

Anderson, G. P., Clough, S. A., Kneizys, F. X.., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0–120 km), Air Force Geophysics Laboratory, Hanscom Air Force Base, MA, USA, TR-86-0110, 1986.
Buehler, S. A., Eriksson, P., Kuhn, T., von Engeln, A., and Verdes, C.: ARTS, the atmospheric radiative transfer simulator, J. Quant. Spectrosc. Ra., 91, 65–93, https://doi.org/10.1016/j.jqsrt.2004.05.051, 2005.
Buehler, S. A., Courcoux, N., and John, V. O.: Radiative transfer calculations for a passive microwave satellite sensor: Comparing a fast model and a line-by-line mode, J. Geophys. Res., 11, D20304, https://doi.org/10.1029/2005JD006552, 2006.
Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O.: ARTS, the atmospheric radiative transfer simulator, Version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558, https://doi.org/10.1016/j.jqsrt.2011.03.001, 2011.
Publications Copernicus
Download
Short summary
By modeling the Special Sensor Microwave Imager/Sounder's mesospheric measurements, inversions methods can be applied to retreive mesospheric temperatures. We compare the fast forward model used by Met Office with reference simulations and find that there is a reasonable agreement between both models and measurements. Thus we recommend that the fast model is used in data assimilation to improve mesospheric temperature retrievals.
By modeling the Special Sensor Microwave Imager/Sounder's mesospheric measurements, inversions...
Citation