Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 3
Atmos. Meas. Tech., 9, 991–999, 2016
https://doi.org/10.5194/amt-9-991-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 991–999, 2016
https://doi.org/10.5194/amt-9-991-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Mar 2016

Research article | 09 Mar 2016

Real-time data acquisition of commercial microwave link networks for hydrometeorological applications

Christian Chwala et al.

Related authors

Rain event detection in commercial microwave link attenuation data using convolutional neural networks
Julius Polz, Christian Chwala, Maximilian Graf, and Harald Kunstmann
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-412,https://doi.org/10.5194/amt-2019-412, 2019
Preprint under review for AMT
Short summary
Rainfall estimation from a German-wide commercial microwave link network: Optimized processing and validation for one year of data
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-423,https://doi.org/10.5194/hess-2019-423, 2019
Revised manuscript under review for HESS
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A channel selection method for hyperspectral atmospheric infrared sounders based on layering
Shujie Chang, Zheng Sheng, Huadong Du, Wei Ge, and Wei Zhang
Atmos. Meas. Tech., 13, 629–644, https://doi.org/10.5194/amt-13-629-2020,https://doi.org/10.5194/amt-13-629-2020, 2020
Short summary
Improved fuzzy logic method to distinguish between meteorological and non-meteorological echoes using C-band polarimetric radar data
Shuai Zhang, Xingyou Huang, Jinzhong Min, Zhigang Chu, Xiaoran Zhuang, and Hengheng Zhang
Atmos. Meas. Tech., 13, 537–551, https://doi.org/10.5194/amt-13-537-2020,https://doi.org/10.5194/amt-13-537-2020, 2020
Short summary
Advanced hodograph-based analysis technique to derive gravity-wave parameters from lidar observations
Irina Strelnikova, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Meas. Tech., 13, 479–499, https://doi.org/10.5194/amt-13-479-2020,https://doi.org/10.5194/amt-13-479-2020, 2020
Short summary
Rayleigh wind retrieval for the ALADIN airborne demonstrator of the Aeolus mission using simulated response calibration
Xiaochun Zhai, Uwe Marksteiner, Fabian Weiler, Christian Lemmerz, Oliver Lux, Benjamin Witschas, and Oliver Reitebuch
Atmos. Meas. Tech., 13, 445–465, https://doi.org/10.5194/amt-13-445-2020,https://doi.org/10.5194/amt-13-445-2020, 2020
Short summary
Determining the daytime Earth radiative flux from National Institute of Standards and Technology Advanced Radiometer (NISTAR) measurements
Wenying Su, Patrick Minnis, Lusheng Liang, David P. Duda, Konstantin Khlopenkov, Mandana M. Thieman, Yinan Yu, Allan Smith, Steven Lorentz, Daniel Feldman, and Francisco P. J. Valero
Atmos. Meas. Tech., 13, 429–443, https://doi.org/10.5194/amt-13-429-2020,https://doi.org/10.5194/amt-13-429-2020, 2020
Short summary

Cited articles

Chwala, C., Gmeiner, A., Qiu, W., Hipp, S., Nienaber, D., Siart, U., Eibert, T., Pohl, M., Seltmann, J., Fritz, J., and Kunstmann, H.: Precipitation observation using microwave backhaul links in the alpine and pre-alpine region of Southern Germany, Hydrol. Earth Syst. Sci., 16, 2647–2661, https://doi.org/10.5194/hess-16-2647-2012, 2012.
David, N., Alpert, P., and Messer, H.: Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements, Atmos. Chem. Phys., 9, 2413–2418, https://doi.org/10.5194/acp-9-2413-2009, 2009.
Doumounia, A., Gosset, M., Cazenave, F., Kacou, M., and Zougmore, F.: Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed, Geophys. Res. Lett., 41, 6016–6022, 2014.
Fencl, M., Rieckermann, J., Schleiss, M., Stránský, D., and Bareš, V.: Assessing the potential of using telecommunication microwave links in urban drainage modelling, Water Sci. Technol., 68, 1810, https://doi.org/10.2166/wst.2013.429, 2013.
Fencl, M., Rieckermann, J., Sýkora, P., Stránský, D., and Bareš, V.: Commercial microwave links instead of rain gauges: fiction or reality?, Water Sci. Technol., 71, 31–37, 2015.
Publications Copernicus
Download
Short summary
Commercial microwave link (CML) networks, like they are used as backbone for the cell phone network, can be used to derive rainfall information. However, data availability is limited due to the lack of suitable data acquisition systems. We have developed and currently operate a custom data acquisition system for CML networks that is able to acquire the required data for a large number of CMLs in real time. This system is the basis for a future countrywide rainfall product derived from CML data.
Commercial microwave link (CML) networks, like they are used as backbone for the cell phone...
Citation